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Abstract

CW saturation experiments are widely used in ESR studies of relaxation processes in proteins and 

lipids. We develop the theory of saturation in ESR spectra in terms of its close relation with that 

of 2D-ELDOR. Our treatment of saturation is then based on the microscopic order macroscopic 

disorder (MOMD) model and can be used to fit the full CW saturation spectrum, rather than fitting 

just the peak–peak amplitude as a function of microwave field B1 as is commonly done. This 

requires fewer experiments to yield effects on T1, as well as provides a more extensive dynamic 

structural picture, for example, for scanning experiments on different protein sites. The code is 

released as a publicly available software package in Python that can be used to fit CW saturation 

spectra from biological samples of interest.

1 Introduction

Spin label ESR is a useful approach for the study of biological systems such as membranes 

and proteins. Especially important has been pulse dipolar ESR to determine protein structure 

[1, 2]. This technique is performed at low temperatures in the frozen state. But ESR can 

very effectively be used for studies at ambient temperatures both in structural studies and 

for dynamics [3, 4]. The dynamic studies have required sophisticated theoretical methods 

for their interpretation especially for ordered systems like membranes and slowly tumbling 

proteins in solution based on the stochastic Liouville equation (SLE). The associated 

experimental methods are typically either based on CW ESR spectra that are unsaturated 

or else pulse methods such as 2D-ESR. However, CW saturation has been used in the past 

to study relaxation processes and is currently used to determine protein secondary structure 

at ambient temperatures [5, 6]. It is based on how O2 or Ni complexes affect the T1’s of 

nitroxide labels at the different protein amino acid positions employing a simple heuristic 

formula and method. However, the theoretical methods needed for more rigorous analysis 

of the CW saturation spectra are implicitly contained in existing software for unsaturated 

CW and pulse experiments such as that employing the MOMD (microscopic order and 

macroscopic disorder) model. This model [7] has been shown to be useful for motions 
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in membranes as well as local motions in proteins which are very slowly tumbling in 

solution. It is the purpose of this paper to develop the analysis and software that already 

exists for unsaturated CW and pulsed ESR into an effective program for CW saturation 

experiments. This will provide the dual advantages of reducing the number of saturation 

experiments required to obtain the T1 enhancements and at the same time provide more 

detailed information on the dynamic structure of the different protein sites.

Early theoretical descriptions of saturation in CW ESR spectroscopies were given by 

Stephen and Fraenkel [8] and by Freed [9] addressing the motional narrowing region for 

free radicals. The first description of saturation for spectra in the slow motional region 

was presented by Goldman et al. [10] utilizing a simple Brownian-type description of the 

dynamics. Since then the more sophisticated MOMD model [7, 11] was found to adequately 

describe the dynamics, and software was developed for this purpose. The emergence of the 

2D-ESR technique of 2D-ELDOR (two dimensional electron–electron double resonance) led 

to useful software [12, 13] which benefited from the fact that during the longer evolution 

times in the experiment, when the molecular motions develop, there is no microwave 

radiation present, but during the very short periods of intense pulses they dominate. But 

for CW, the microwave radiation is constantly present, so the molecular dynamics and 

the effects of the radiation must be considered simultaneously [10]. Yet the elements of 

the SLE contained in the theory for 2D-ELDOR are sufficient for the CW case with just 

rearrangement of the appropriate components of the SLE needed. This is the approach taken 

in the present paper. We then demonstrate its utility by comparison with experiments on a 

spin labeled lipid contained in lipid vesicles where a MOMD approach is needed.

2 Theory of ESR Saturation Spectra

The evolution of the orientation-dependent density matrix ρ(Ω, t) is given by the stochastic 

Liouville equation (SLE): [12, 14]

∂ρ(Ω, t)
∂t = − ı[ℋ, ρ(Ω, t)] − ΓΩ ρ(Ω, t) − ρeq (1)

Here Ω denotes the orientation of the spin label and ℒ denotes the Liouville operator. 

Equation (1) can be rewritten as:

∂ρ(Ω, t)
∂t = − ıℋ×ρ(Ω, t) − ΓΩρ(Ω, t) + ΓΩρeq(Ω) = − ℒρ(Ω, t) + ΓΩρeq(Ω), (2)

where ℒ is the stochastic Liouville operator. For the case of a saturating microwave field, 

the SLE can be written as: [10, 15–18]

d
dt

Z(t)
Z*(t)
χ(t)

= −

ℒ+1 − ıω⫿ 0 ıD

0 ℒ−1 + ıω⫿ −ıD

ıDT −ıDT ℒ0

Z(t)
Z*(t)
χ(t)

+
ıQ

−ıQ
0

(3)

Here Z(t) = Z′(t) + ıZ″(t) is the first harmonic of the pS = 1 coherence components of the 

density matrix ρ(Ω, t), written in a Liouville space format. Given the Hermitian (self-adjoint) 
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nature of ρ(Ω, t), the corresponding components in the pS = −1 coherence are given as 

Z*(t) = Z′(t) − ıZ″(t), and ω denotes the frequency offset from resonance.

χ(t) denotes the deviation of the pS = 0 coherence components of ρ(Ω, t) from the 

equilibrium density matrix ρeq(Ω).

ℒ0, ℒ+1 and ℒ−1 denote the stochastic Liouville matrices corresponding to the electronic 

coherence orders pS = 0, +1, −1 respectively.

D denotes the transition-moment matrix that connects the off-diagonal matrix elements of 

ρ(Ω, t) to its diagonal elements. D is proportional to the applied saturating field B1. The 

derivation of D from first principles is described later in the text.

Note that ℒ0, ℒ+1, ℒ−1, as well as the 3 × 3 block matrix in Eq. (3), are all complex 

symmetric.

Q is closely related to the off-diagonal space starting vector [12] used in the analysis of 

pulsed 2D-ELDOR spectroscopy experiments. The non-zero elements of Q correspond to 

the allowed ESR transitions. The expression for Q, after neglecting constant factors, is:

Q ∝ B1 v+1 , (4)

where v+1 denotes the starting vector in the off-diagonal space, i.e., pS = +1 coherence order, 

as described elsewhere [12, 18].

The steady state solution of Eq. (3), obtained by putting the left hand side derivative term 

equal to 0, is given as:

0 = −

ℒ+1 − ıω⫿ 0 ıD

0 ℒ−1 + ıω⫿ −ıD

ıDT −ıDT ℒ0

Zss(t)
Zss* (t)
χss(t)

+
ıQ

−ıQ
0

(5)

Rearranging Eq. (5), we get:

Zss(t)
Zss* (t)
χss(t)

=

ℒ+1 − ıω⫿ 0 ıD

0 ℒ−1 + ıω⫿ −ıD

ıDT −ıDT ℒ0

−1
ıQ

−ıQ
0

(6)

The CW absorbed power is proportional to the steady-state magnetization for the pS = −1 

coherence, which in turn is related to Z″(t):

P ∝ QTZ″ss = Im QTZss (7)

Here Im(z) denotes the imaginary part of a complex z.

However, we know that
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QTZss = QT 0 0
Zss(t)
Zss* (t)
χss(t)

=
Q
0
0

T ℒ+1 − ıω⫿   0 ıD

0 ℒ−1 + ıω⫿   −ıD

ıDT −ıDT ℒ0

−1
ıQ

−ıQ
0

(8)

Therefore, the absorbed power P is given as:

P ∝ Im QTZss = Im
Q
0
0

T ℒ+1 − ıω⫿ 0 ıD

0 ℒ−1 + ıω⫿ −ıD

ıDT −ıDT ℒ0

−1
ıQ

−ıQ
0

(9)

In the non-saturating CW regime, which is in the limit of small B1, the expression for the 

absorbed power turns out to be much simpler, as we can set the spin-transition matrices D to 

be 0, given that they are proportional to the applied microwave field B1. By combining Eqs. 

(4) and (9), we get:

P ∝ Im
Q
0
0

T ℒ+1 − ıω⫿ 0 0

0 ℒ−1 + ıω⫿ 0
0 0 ℒ0

−1
ıQ

−ıQ
0

(10)

= Im ıQT ℒ+1 − ıω⫿ −1Q (11)

= Re QT ℒ+1 − ıω⫿ −1Q (12)

= Re QT ℒ+1 − ıω⫿ −1Q (13)

= B1
2

2
Re v+1

T ℒ+1 − ıω⫿ −1v+1 (14)

= B1
2

4 Re v+1
T ℒ+1 − ıω⫿ −1v+1 (15)

In experiments, usually we are interested in the ratio of P to the applied microwave field B1. 

Therefore, I(ω), the CW absorption signal, is given as:

I(ω) ∝ B1Re v+1
T ℒ+1 − ıω⫿ −1v+1 (16)

in the weak microwave field limit. This is the well-known expression from linear response 

theory used for calculating unsaturated CW spectra [11, 14, 18].
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Similarly, in the Bloch Equation limit, Eq. (9) can be shown [16, 17] to reduce to the 

well-known equation for CW absorption in the presence of a saturating field B1:

I(ω) ∝ B1
1 + ω − ω0

2T2
2 + γe2B1

2T1T2
(17)

Here γe is the electron gyromagnetic ratio, B1 is the applied microwave field, and T1, T2 are 

the longitudinal and transverse electron spin relaxation times, respectively.

In Eq. (3), the spin transition matrix D relates the off-diagonal coherence orders pS = ±1 to 

pS = 0. Essentially, D is the contribution of the microwave field to the overall 3 × 3 block 

stochastic Liouville superoperator that represents the joint evolution of all the coherence 

orders pS = 0, ±1. Given greater values of the microwave field B1, the various coherences pS 

= ± 1, 0 cannot be decoupled from each other.

The block off-diagonal part of the 3 × 3 block matrix in Eq. (3),

0 0 ıD
0 0 −ıD

ıDT −ıDT 0
, (18)

is the contribution of the applied microwave field B1, which is simply obtained from −iℋ1
×, 

where ℋ1 = γeB1Sx. Here Sx denotes the x-component of the electron spin operator, and A×ρ 
≡ [A, ρ] = Aρ − ρA denotes the superoperator corresponding to the operator A.

Now, ıD, in the top right block of Eq. (18), is given by the elements of ℋ1
× that propagate 

from the pS = 0 coherence to the pS = +1 coherence. The elements of ıD are given as:

pS = + 1, qS = 0, λ1 −ıℋ1
× pS = 0, qS = ± 1, λ2

= pS = + 1, qS = 0, λ1 −ıB1Sx
× pS = 0, qS = ± 1, λ2

(19)

= ± B1ı1
2δλ1, λ2 . (20)

Here λ1, λ2 denote the “quantum numbers” that denote the motional degrees of freedom, 

which stems from the fact that the SLE basis set is a product space of spin and classical 

motional degrees of freedom. However, −ıℋ1
× does not affect these motional degrees of 

freedom, hence the Kronecker δ term δλ1, λ2 in Eq. (20).

In fact the ı
2δλ1, λ2 term in Eq. (20) is exactly the same as the pulse propagator component 

P+1 0 that transfers from coherence order pS = 0 to coherence order pS = +1 in a pulsed 

ESR experiment such as 2D-ELDOR [12], so

ıD = B1P+1 0 (21)
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Equation (21) holds for any valid SLE basis, even after basis set symmetrizations [12] such 

as the M symmetrization and the K symmetrization. Selection rules [11] can also be applied 

as in the computation of 2D-ELDOR spectra.

By utilizing the fact that the pS = −1 coherence components of the density matrix are 

complex conjugates of the pS = +1 coherence components, along with the fact that −ıℋ1
× is 

complex symmetric, we can populate the remaining block off-diagonal elements of the 3 × 3 

block matrix in Eq. (3), namely −ıD, ıDT , and −ıDT .

By combining Eqs. (9) and (21), we obtain the following expression for absorbed power in a 

CW saturation experiment:

P ∝ Im QTZss = Im
Q
0
0

T ℒ+1 − ıω⫿ 0 B1P+1 0

0 ℒ−1 + ıω⫿ −B1P+1 0

B1P+1 0
T −B1P+1 0

T ℒ0

−1
ιQ

−ιQ
0

(22)

Note that the 3 × 3 block matrix in Eq. (22) is still complex symmetric.

Having established a basic framework for calculating the CW saturation spectrum, we now 

consider the details of the basis set. As in earlier work [12], we utilize the M-symmetrized 

basis vectors for representing v+1, ℒ0, ℒ+1, and ℒ−1. Moreover, ℒ−1 and ℒ+1 are complex 

conjugate transposes of each other, i.e., ℒ−1 = ℒ+1
† . In short, all the components of the 3 × 

3 block matrix are already available from the 2D-ELDOR theory [12].

3 Results

For evaluating the CW saturation spectrum as in Eq. (9), we use the spsolve solver in 

Python’s Scipy module that solves the resolvent in Eq. (9) for each magnetic field offset 

value (or equivalently an offset frequency ω after multiplying the field offset B−B0 with the 

electron gyromagnetic ratio γe) by performing a sparse LU decomposition [19] of the sparse 

3 × 3 complex symmetric block matrix in Eq. (9). Matrix partitioning is another approach 

suitable for such computations [20]. While the complex symmetric Lanczos based solvers 

[21] are an option, they do not work effectively for the case of a saturating microwave 

field [18]. Moreover, given that most saturation experiments are performed at X band and 

at motional rates that are not ultraslow, the smaller basis sets are not very large, so using 

a resolvent based solver is not very time consuming. For cases that involve large SLE 

matrices [22, 23], one has the option of switching to solvers suitable for sparse matrices 

such as GMRES [24]. We use a threshold of matrix size 2000 in our fitting routines, above 

which the program automatically switches from spsolve to gmres. Moreover, we find it 

advantageous in terms of computational speed to use a diagonal preconditioner [18], given 

by the following expression based on Eq. (22):
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M(ω) = diag

ℒ+1 − ıω⫿ 0 B1P+1 0

0 ℒ−1 + ιω⫿ −B1P+1 0

B1P+1 0
T −B1P+1 0

T ℒ0

. (23)

Here diag(A) denotes the diagonal matrix formed by the diagonal entries of a matrix 

A. Similar preconditioners have been used previously for calculating magnetic resonance 

spectra [18, 25, 26]. We used a 4 Core 3.20 GHz Windows 10 workstation for our 

computations. While computational times per spectrum depend on various factors, a typical 

CW saturation MOMD calculation for 20 orientations and a grid of 128 magnetic field 

values in Fig. 6 took roughly 200 s.

3.1 Increasing Microwave Field B1

Equation (17) tells us that the dependence on B1 is approximately linear for small values of 

B1 and decreases as ∝ 1
B1

 for very large values of B1. The maximum intensity is attained for 

B1 O 1
γe T1T2

.

We show the effect of increasing B1 on the CW saturation spectrum in Fig. 1

As expected, the central peak first increases in height, then decreases when B1 is large. 

There are empirical relations [4, 5] for the central peak–peak amplitude as a function of B1. 

While we strongly recommend using our simulation and fitting routines given their rigorous 

grounding in stochastic Liouville theory, we demonstrate here for the sake of completeness 

the fit of the central peak-peak amplitude calculated by our SLE simulations in Fig. 2 to the 

following empirical relation:

I B1 = I0B1

1 + PB1
2 ϵ (24)

Here I0 is a proportionality constant, P is the saturation parameter P = γe2T1T2
eff, and ϵ is an 

empirical correction factor. Typically ϵ ~ 1.5 for homogeneous broadening and ϵ ~ 0.5 for 

inhomogeneous broadening.

We use MATLAB’s cftool to perform this least squares fit using the trust region algorithm. 

We used the following settings in cftool:

• Lower/upper bounds for I0: [0, ∞)

• Lower/upper bounds for P: [0, ∞)

• Lower/upper bounds for ϵ: [0, ∞)

• tolFun: 10−6

• tolX: 10−6
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The R2 value of the fit was 0.9994. Here are the fit parameters along with their 95% 

confidence intervals (Table 1):

The fit value of ϵ = 1.582 is close to 1.5, which is appropriate because the simulated spectra 

are homogeneously broadened and no additional inhomogeneous broadening was included.

3.2 Effect of Motional Rate

The effect of motional rate is similar to the effect of motional rate on unsaturated CW 

spectra—at motional rates approaching 109s−1 at X band, we see three sharp hyperfine 

lines. As the motional rate slows down, we see that the lines get broader. In the motional 

narrowing region where the diffusion tensor R ≳ 109s−1 at X-band, we see that the effects of 

saturation are visible merely as an increased linewidth and decreased intensity in the sharp 

hyperfine lines.

Figure 3 shows the dependence of CW saturation spectra on the motional rate. While our 

formulation supports non-isotropic diffusion tensors and arbitrary diffusion and magnetic 

frame tilt angles, we chose an isotropic diffusion tensor for simplicity.

3.3 Effect of Heisenberg Exchange ωss

Heisenberg exchange leads to both an overall broadening of the CW saturation spectra, and 

transfer of saturation among the hyperfine components. Saturation spectra can be used to 

measure Heisenberg exchange rates in order to determine the accessibility of side chains 

such as in T4 Lysosyme [5]. In Fig. 4, we show the effect of Heisenberg exchange on a 

nitroxide spectrum.

4 Least Squares Fitting Package

A key advantage of our general SLE-based approach is that we can perform non-linear 

least-squares fitting [13] of CW saturation spectra to fit motional and other parameters in 

a rigorous manner, requiring fewer experimental measurements of CW saturation spectra. 

To perform automated least-squares fitting, we employ a current version the Levenberg 

Marquardt algorithm available under the scipy. optimize and lmfit packages in Python. 

With the advent of robust and powerful scientific computing libraries, we can connect our 

software for computing CW saturation spectra to such packages that support state-of-the-art 

features such as constrained optimization, automatically generated goodness-of-fit reports 

such as χ square, information criteria [27], etc. Given the parameters listed in Table 2 that 

can have an effect on the CW saturation spectrum, these libraries make it much easier for the 

experimentalist to quickly explore various fit parameters and understand their uncertainties 

in an automated fashion. Typically we set Rxx = Ryy = R⊥ and Rzz = R∥. To avoid correlation 

problems sometimes we fit R∥ and R⊥ and other times we fit R ≡ R R⊥
2  and N ≡

R
R⊥

.

Given the virtues of using these advanced fitting packages readily available open-source in 

Python and specifically in lmfit, we have chosen to proceed with lmfit as our primary non-

linear least-squares fitting routine. lmfit also provides options for utlizing other advanced 
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fitting routines such as Markov chain Monte Carlo [28, 29] and Nelder-Mead simplex [28, 

29] that provide additional tools for performing challenging non-linear least square fits.

To illustrate the utility of lmfit, we perform the following non-linear least-squares fit to a 

model spectrum and show the results in Fig. 5. We generated a CW spectrum and then 

randomly initialize F, Rxx, Ryy, and Rzz, allowing the other parameters to stay at their actual 

model values. With initial parameter settings for Rxx, Ryy, Rzz, F to be far from their actual 

values, we test how long it takes for lmfit to converge to the actual values of Rxx, Ryy, 

Rzz, F. In Fig. 5 one sees how the CW saturation spectrum corresponding to the initial seed 

parameters predicts a completely different spectrum (shown in orange on the left subplot), 

whereas after fitting, the predicted and model spectrum (shown in blue in both subplots) 

agree very well. In addition, the best fit parameters occur exactly at their actual values in 97 

function evaluations. By adding noise to the model spectrum, we might reduce the quality of 

fit slightly, but we still expect our approach to yield robust fits. Note that we let Rxx = Ryy 

as is typically done. A wise heuristic would be to add such constraints such as this one, and 

then relax them when one is close to the best fit, in order to achieve further fine tuning. lmfit 

is an excellent package for specifying such arbitrary constraints.

Here are the results of the least squares fit reported by lmfit:

• Fitting method: Levenberg Marquardt least squares

• Number of function evaluations: 97

• Data points in the spectrum: 256

• Number of independent fit parameters: 3

• χ square: 3.8364 × 10−30

• Akaike information criterion: [27]—18753.22

• Bayesian information criterion: [27]—18742.58

Here are the best fit values of the parameters:

5 Least Squares Fitting of Slow-Motional Lipid Saturation Spectra

As described in Sect. 4, we can fit experimental CW saturation spectra. We performed 

least squares fits to experimental spectra from randomly ordered (MOMD) 5PC-DMPC 

lipid spectra [4] at 39°C showing our theoretical and numerical fitting approach when 

combined with the MOMD model [11]. As noted in Sect. 3, Lanczos type solvers are 

not recommended for computing CW saturation spectra. But one can first use the nlsl 

package [13] to fit unsaturated CW spectra when the microwave field B1 is low enough. 

This would yield an initial set of parameters. Then one could optimize them by fitting the 

set of saturated and unsaturated spectra. We followed this approach for our fits shown in 

Fig. 6. Given the decay in peak-peak amplitudes for large values of B1 as seen in Fig. 2, 

performing simultaneous fitting of multiple saturation spectra can lead to excessive weight 

towards spectra with high peak–peak amplitudes. Therefore we chose a simple reweighting 

strategy for our simultaneous fits to CW saturation spectra corresponding to multiple values 
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of B1. For the purposes of least squares fitting, we reweigh each derivative CW saturation 

spectrum by the following factor:

W k = 1
maxωXk, expt(ω) − minωXk, expt(ω) , (25)

where Xk,expt(ω) denotes the experimental derivative CW spectrum at frequency ω, 

corresponding to the kth value of the microwave field B1 in the set of experimental CW 

saturation spectra being simultaneously fit.

The overall least squares residual to be minimized, thus becomes the following:

C = ∑
k = 1

N
∑
ω

W k × Xk, expt(ω) − Xk, sim(ω) 2, (26)

where k ∈ {1, 2, … N} denote the set of experimental CW saturation spectra being 

simultaneously fit. Each k nominally corresponds to a different value of B1.

Just like Xk,expt(ω), Xk,sim(ω) denotes the simulated derivative CW spectrum corresponding 

to the kth value of B1 in the set of experimental spectra being simultaneously fit. While 

we chose a simple form of the least-squares residual in Eq. (26), lmfit provides options for 

creating custom residual functions.

The fit parameters are given in the following table:

The g and A tensor parameters were assumed to be as follows, partially based on previous 

work: [30, 31].

6 Conclusion

In this work, we showed the correspondence between the theory of 2D-ELDOR and the 

theory of CW saturation spectra, thereby creating a rigorous paradigm for simulating and 

fitting CW saturation spectra that includes all the dynamical parameters that are relevant 

to many studies involving CW saturation ESR, and connect our approach with state-of-the-

art fitting packages in Python. This approach is then applied to analyze an experimental 

case. We shall release our software as a Python package for the benefit of the ESR 

community. Our SLE-based approach to saturation is quite general and can be applied to 

other saturation-based ESR methods such as pulsed saturation recovery [32]. An additional 

advantage of our approach is that it provides an extra “dimension” as one simultaneously fits 

spectra as a function of microwave field B1, since this provides more independent data to 

extract the parameters to be fit.
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Fig. 1. 
CW saturation spectra as a function of B1. gxx = 2.0087, gyy = 2.0057, gzz = 2.0021, Axx = 

Ayy = 6 G, Azz = 36 G. Motional rate Rxx = Ryy = Rzz = 108 s−1, electronic longitudinal spin 

relaxation rate W e = 1
2T1

= 105s−1 . Static field B0 = 3360 G (X band)
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Fig. 2. 
Central peak-peak amplitude for CW saturation spectra as a function of B1. gxx = 2.0087, 

gyy = 2.0057, gzz = 2.0021, Axx = Ayy = 6 G, Azz = 36 G. Motional rate Rxx = Ryy = Rzz = 

108 s−1, We = 105 s−1. Static field B0 = 3360 G (X band)

Gupta et al. Page 13

Appl Magn Reson. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
CW saturation spectra as a function of the rotational diffusion rate. gxx = 2.0087, gyy = 

2.0057, gzz = 2.0021, Axx = Ayy = 6 G, Azz = 36 G. We = 105 s−1. Static field B0 = 3360 G 

(X band). B1 = 0.5 G
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Fig. 4. 
CW saturation spectra as a function of the Heisenberg exchange rate, ωss. We use a motional 

rate of Rxx = Ryy = Rzz = 3.1623 × 108 s−1 gxx = 2.0087, gyy = 2.0057, gzz = 2.0021, Axx 

= Ayy = 6 G, Azz = 36 G. Longitudinal spin relaxation rate We = 105 s−1. Static field B0 = 

3360 G (X band). B1 = 0.5 G
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Fig. 5. 
Non-linear least squares fit to CW saturation spectra. The model spectrum has a motional 

rate of Rxx = Ryy = 1.51 × 107 s−1, Rzz = 108 s−1, gxx = 2.00882, gyy = 2.0062, gzz = 

2.00233, Axx = 5.2 G, Ayy = 5.8 G, Azz = 34.4 G. The scale parameter F is chosen to be 1.0, 

and B1 = 0.5 G. We used the lmfit package in Python and allowed the scale parameter F, the 

x and y diffusion rates Rxx, Ryy with the constraint Rxx = Ryy = R⊥, and the z diffusion rate 

Rzz = R∥ to vary. Here We = 8.8 × 104 s−1. Static field B0 = 3360 G (X band). Results of the 

fit are summarized in Table 3
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Fig. 6. 
Fit to experimental 5PC-DMPC CW saturation spectra at 39°C. The fit parameters are listed 

in Table 4. Static field B0 = 3360 G (X band). The maximum value of B1 determined 

for a small sample of PADS, as described by Goldman Bruno, and Freed [10], was 0.97 

Gauss. With the correction for the difference in resonator Q-values, this number for the 

5PC-in-DMPC sample was estimated as 0.9 Gauss. We used 20 orientations per MOMD 

calculation. χ2 residual for the simultaneous fits was 0.57 [28] (Table 5).

Gupta et al. Page 17

Appl Magn Reson. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gupta et al. Page 18

Table 1

Non-linear least squares fit parameters for Fig. 2

Parameter Fit value 95% confidence interval

I 0 0.1073 (0.1052, 0.1093)

P 7.263 G−2 (6.875, 7.65) G−2

ϵ 1.582 (1.549, 1.615)
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Table 3

Best fit values reported by lmfit corresponding to Fig. 5

Parameter symbol Parameter name Fit value Initial guess value

dx log10(Rxx) 7.2 9.5

dy log10(Ryy) 7.2 [dy constrained to be equal to dx] 9.5

dz log10(Rzz) 8.0 9.5

scale F 1.0 0.1
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Table 4

Fit values corresponding to Fig. 6

Parameter symbol Parameter name Fit value

dx log10 (Rxx in s−1) 8.18

dy log10 (Ryy in s−1) 8.18

dz log10 (Rzz in s−1) 9.27

scale F 1866.29

c20 c0
2 2.0

t1edi log10(2We) 5.046

gib0 ΔG 1.94 Gauss
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Table 5

g and A tensor values for 5PC-in-DMPC

Parameter symbol Parameter name Value

gxx g xx 2.00882

gyy g yy 2.0062

gzz g zz 2.00233

axx A xx 5.2 Gauss

ayy A yy 5.8 Gauss

azz A zz 33.5 Gauss
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