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Abstract

Analysis of small molecules is essential to metabolomics, natural products, drug discovery, food 

technology, and many other areas of interest. Current barriers preclude from identifying the 

constituent molecules in a mixture as overlapping clusters of NMR lines pose a major challenge 

in resolving signature frequencies for individual molecules. While homonuclear decoupling 

techniques produce much simplified pure shift spectra, they often affect sensitivity. Conversion 

of typical NMR spectra to pure shift spectra by signal processing without a priori knowledge about 

the coupling patterns is essential for accurate analysis. We developed a super-resolved wavelet 

packet transform based 1H NMR spectroscopy that can be used in high-throughput studies to 

reliably decouple individual constituents of small molecule mixtures. We demonstrate the efficacy 

of the method on the model mixtures of saccharides and amino acids in the presence of significant 

noise.
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INTRODUCTION

Analysis of small molecules across a wide range of studies of metabolites, organic and 

natural products, food, potential drug molecules rely heavily on nuclear magnetic resonance 

(NMR) spectroscopy, along with mass spectrometry (MS) and liquid chromatography 

(LC).1–9 Out of the three methods, NMR is ideal for identification of novel molecules 

and large-scale studies, given the ease of sample preparation, its non-destructive nature, 

access to instruments and high reproducibility.10 However, 1H NMR spectroscopy, which is 

the most widely used version, suffers from limited resolution in analyzing small-molecule 

mixtures.11,12 In recent years, sensitivity of NMR has been improved greatly,13–15 but 

resolution enhancement efforts have faced an immovable barrier due to the presence of 

overlapping multiplets, originating from the relatively small chemical shift windows and 

scalar couplings between protons. While multidimensional NMR can enhance resolution, 

these are often not feasible because of the long signal acquisition time associated with 

those. Collapsing the multiplets in a typical 1H NMR spectrum into singlets produces 

a pure shift spectrum,16,17 which can greatly improve resolution for analysis of small 

molecule mixtures. Homonuclear decoupled 1H NMR yields pure shift spectra,16,18–21 but 

the resolution increment in those experiments often comes at the price of reduced sensitivity 

and spectral artifacts.16,22 However, deconvolution of NMR spectra to shift spectra, which 

includes the maximum entropy method, can only be applied successfully when the scalar 

coupling patterns and the coupling constants are known.23,24 Many other sampling, spectral 

editing, and fingerprint matching techniques have been developed for both 1D and 2D NMR 

spectroscopic analysis,25–29 but those have either limited applicability or limited reliability, 

especially for highly complex or novel molecular mixtures. In that regard, NMR shift 

spectroscopy provides more control to the users in spectral interpretation and error analysis. 

Therefore, our objective was to propose a signal processing technique that can be applied 

to any 1H NMR spectrum of a mixture of small molecules without a priori knowledge and 

convert it to a shift spectrum for accurate identification of the constituting molecules.

Magnetic resonance spectra are made of multiple components corresponding to different 

types of interactions among nuclear and/or electronic spins. A multilevel filtration technique 

is required to separate the components by their frequency and timestamps. Wavelet 

transform is such a technique that decomposes a spectrum into a pair of approximation and 
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detail components, which corresponds to the low- and high-frequency spectral components, 

respectively. In converting NMR spectra to shift spectra, we used successive wavelet 

decomposition of the original spectra to produce an approximation component which 

provides the overall envelope encompassing a multiplet, essentially converting it to a singlet. 

Previously, we applied the wavelet transform based algorithm30 to continuous wave electron 

spin resonance (cw-ESR) spectra, in order to enhance the resolution and extract hidden 

features.31 Its applications in removing spectral noise30,32–34 and isolating weak signal 

components in ESR35 have been extremely successful.

In the discrete form of wavelet transform (DWT), the approximation component from a 

decomposition level is passed through to the next level of decomposition, providing a coarse 

filtering of the original signal into sub-bands of unequal frequency ranges. In wavelet packet 

transform (WPT), both the approximation and detail components are decomposed at each 

level, resulting in a much finer filtering over 2K equal-width sub-bands at a decomposition 

level of K. That has been our motivation to use WPT for conversion of NMR to shift spectra 

without any loss of information. In this regard, we should note that detail components 

extract both high-frequency spectral features as well as noise. That is why wavelet transform 

based conversion of NMR to shift spectra is practically insensitive to noise.

THEORETICAL METHODS

A high level summary of the process of generating shift spectra from NMR using WPT is 

shown in Figure 1 using glutathione 1H NMR as an example. In the first step, the input 

NMR spectrum was decomposed by WPT, producing an approximation component that is 

virtually the original spectrum, while most of the spectral noise showed up in the detail 

component. The decomposition was continued until all multiplets in the spectrum were 

converted to singlets in the resultant approximation component (AK). For this particular 

example, K was equal to 7. The second step in the analysis poses two sets of challenges: 

(i) identifying artifacts and (ii) locating peak positions. We figured that the artifacts can be 

separated from actual peaks by comparing the final approximation component to the original 

spectrum as well as the approximation components from the previous decomposition levels. 

In the second step of Figure 1, the relevant regions are highlighted (light purple), while 

peaks showing up outside those regions were identified as artifacts and those are highlighted 

in yellow circles. The peaks in the relevant regions are pointed out by downward triangles 

(blue). Consequently the stick spectrum is produced combining the peak positions and 

heights. In this work, we selected the peaks by visual inspection, however one can develop 

an automated method based on well-justified criteria.36 The details of the WPT theory is 

provided in the Supporting Information.

RESULTS AND DISCUSSION

Model Data Preparation.

Quantitative analysis of carbohydrates is an essential step in food and pharmaceutical 

industries,37–41 while identification of amino acids in biological samples is crucial in 

probing various disease pathophysiology.42–46 We analyzed two model mixtures of (I) 

saccharides and (II) amino acids in this work. An equal mixture of cellobiose, fructose 
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and sucrose was used in (I). In our second model (II), we used a mixture of six amino acids, 

namely, glutamine, glycine, isoleucine, leucine, threonine, and valine. Two different varieties 

of (II) were prepared by mixing the individual amino acid spectra in different proportions.

All the NMR spectra in this work were obtained from the Human Metabolome Database 

(HMDB).47 Impurity peaks at chemical shifts values smaller than 2.4 ppm in the cellobiose 

spectrum were removed. Normalization of individual spectra was carried out by dividing 

each data set by the sum of the NMR intensities. We concatenated individual components’ 

spectra to create the NMR spectra for the model mixtures. The process of concatenation 

increased the number of spectral data points compared to the individual spectra or artificially 

enhanced spectral resolution. In order to resolve the issue, the resultant spectral domain size 

was reduced to the mean length of the individual spectra by binning of the NMR frequencies 

into discrete intervals. For mixture (I), the noisy spectra was obtained by adding 2.5% 

random noise to the noise-free version, and 10% random noise was added in case of mixture 

(II).

Spectral Analysis.

In analyzing a model mixture of saccharides (I), WPT shift spectra for each of the 

components, cellobiose, fructose, and sucrose, were obtained first from the corresponding 

experimental 1H NMR spectra, recorded at 500 MHz. Cellobiose is a disaccharide and is an 

excellent test case given that its NMR spectrum is highly overlapped in the region of 3.2–4.0 

ppm. The WPT spectra were obtained from the corresponding 1H NMR spectra by using 

Daubechies (Db9) wavelet at the decomposition levels of 7 (cellobiose), 7 (fructose), and 8 

(sucrose), respectively. For all the three molecules, the 1H NMR multiplet midpoints and the 

WPT shift peaks are given in Table S1. It can be seen that each of the peaks were replicated 

in the WPT shift spectra except for the peak at 3.89 ppm for sucrose. The NMR spectrum 

of sucrose has two double doublets centered at 3.87 and 3.89 ppm. The WPT analysis in 

this case treated the two closely spaced clusters as a single multiplet and yielded a peak at 

3.87 ppm. The original NMR and the WPT shift spectra for the three saccharides are shown 

in Figure 2. Next, the individual NMR spectra were mixed in an appropriate fashion to 

create the NMR spectra for a mixture of the saccharides. Figure 3 shows the conversion and 

analysis of the mixed NMR spectra. The key takeaways were the replication of the signature 

NMR peaks for all three components in the highly overlapped region of 3.5 ppm < chemical 

shift ≤ 4.2 ppm and the exact match between the WPT shift spectra for the noise-free (A) 

and noisy (B) cases. Comparing with the original spectra, we inferred that the peak at 3.81 

ppm was resulted from unresolved peaks centered around 3.81 ppm (fructose), 3.82 ppm 

(sucrose), and 3.83 ppm (cellobiose). A separate analysis of the region between 3.78 and 

3.94 ppm at a wavelet decomposition level of 7 resolved the cellobiose peak at 3.83 ppm and 

previously unresolved peaks at 3.87 ppm (sucrose) and 3.90 ppm (fructose).

Two sets of NMR spectra for model mixture (II) were produced by mixing the spectra of 

glutamine, glycine, isoleucine, leucine, threonine, and valine at equal (II.A) and varying 

proportions (II.B), given in Figure 4. The noise level was set to 10% compared to the highest 

NMR peak intensity in both the cases. The area under an NMR peak is proportional to 

the number of associated protons and in a mixed spectra, separated constituent peaks can 
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be used in quantification of the composition of the mixture. Given that the area under a 

peak is proportional to both its height and width, we compared the WPT shift spectra of 

(II.A) and (II.B) for correlation with the compositions of the mixtures. Glancing through 

the two WPT shift spectra shown in Figure 4A,B, we can notice significant changes in 

the peak intensities for glycine, threonine and valine, which correlates to the change in the 

compositions of the two mixtures. By comparing the peak heights in the second mixture 

with the first, we calculated the amount of those three amino acids to be 13% (absolute 

error = +3), 24% (−6), and 14% (+4), respectively. For glutamine, isoleucine and leucine, 

the calculated concentrations from WPT spectra were 18% (−2), 17% (+2), and 15% (0). 

While the calculated relative concentrations were significantly off from the actual values 

given that peak heights were used instead of peak areas, the changes in peak intensities in 

the two model mixtures correlated with the changes in their compositions. This property of 

WPT shift spectra can be useful in semiquantitative analysis of small molecule mixtures and 

probing relative changes in their compositions. WPT shift peaks for the individual amino 

acids, obtained at a wavelet decomposition level of 7, are tabulated in Table S2.

CONCLUSIONS

In summary, we showed that wavelet transform or more specifically wavelet packet 

transform produces highly resolved shift spectra from 1H NMR spectra of small molecule 

mixtures in a reliable fashion. Our method extracted the signature NMR lines for the 

constituent molecules in two model mixtures of saccharides and amino acids, even in the 

presence of 10% noise. Additionally, correlation between the composition of a mixture and 

its WPT shift peak intensities revealed the quantitative nature of the method. It should 

be noted that WPT analysis resolves NMR spectra fully where the multiplets are not 

indistinguishably overlapped.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conversion of 1H NMR spectra to WPT shift spectra. Glutathione 1H NMR recorded at 500 

MHz in H2O is shown in the left. In the first step, all multiplets in the spectrum are collapsed 

to singlets in the approximation component (blue boxed) at WPT decomposition level K. 

The peaks are separated from artifacts (yellow circles) of WPT in the second step. The peak 

positions (blue colored triangles) and heights are used to produce the stick spectrum. The 

maximum intensity of the original NMR spectrum was ~1, and the maximum intensities of 

each of the components are printed next to the spectra in blue for comparison.
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Figure 2. 
Conversions of 1H NMR spectra of cellobiose, fructose, and sucrose to WPT shift spectra. 

The WPT shift spectra were produced from the approximation components at levels 7 (A), 

7 (B), and 8 (C) of wavelet decomposition of the respective NMR spectra by using Db9 

wavelet.
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Figure 3. 
Analysis of model mixtures of cellobiose, fructose, and sucrose using Db9 wavelet at a 

wavelet decomposition level of 8 are illustrated for the noise-free (A) and noisy (B) data 

sets. The resolved peaks corresponding to cellobiose (light blue), fructose (violet), and 

sucrose (navy) are color-coded, while the line at 3.81 ppm is marked unresolved (gray). 

Analysis of the spectral slice between 3.78 and 3.94 ppm at a decomposition level of 7 

resolved the peaks at 3.83 ppm (cellobiose), 3.87 ppm (sucrose) and 3.90 ppm (fructose).
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Figure 4. 
Analysis of the NMR spectra of two different compositions of model mixture (II) of six 

amino acids at 10% noise are illustrated. Conversion of the NMR spectra using Db9 wavelet 

at a decomposition level of 8 are shown (A, B). The peaks corresponding to glutamine (red), 

glycine (blue), isoleucine (green), leucine (orange), threonine (cyan), and valine (magenta) 

were resolved in both the WPT shift spectra. The compositions of the mixtures and the 

resolved lines in the WPT shift spectra are tabulated on the left.
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