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ABSTRACT A new method is presented to denoise 1-D experimental signals using wavelet transforms.
Although the state-of-the-art wavelet denoising methods perform better than other denoising methods, they
are not very effective for experimental signals. Unlike images and other signals, experimental signals in
chemical and biophysical applications, for example, are less tolerant to signal distortion and under-denoising
caused by the standard wavelet denoising methods. The new method: 1) provides a method to select the
number of decomposition levels to denoise; 2) uses a new formula to calculate noise thresholds that does not
require noise estimation; 3) uses separate noise thresholds for positive and negative wavelet coefficients;
4) applies denoising to the approximation component; and 5) allows the flexibility to adjust the noise
thresholds. The new method is applied to continuous wave electron spin resonance spectra and it is found
that it increases the signal-to-noise ratio (SNR) by more than 32 dB without distorting the signal, whereas
standard denoising methods improve the SNR by less than 10 dB and with some distortion. In addition, its
computation time is more than six times faster.

INDEX TERMS Wavelet transform, wavelet denoising, noise thresholding, noise reduction, magnetic
resonance spectroscopy.

I. INTRODUCTION
Experimental signals are often difficult to study because
weak signals have a low Signal-to-Noise Ratio (SNR). Based
on the discrete wavelet transform (DWT), various wavelet
denoising methods like wavelet shrinkage [1]–[16], wavelet
coefficient modeling [17]–[20], and wavelet transform mod-
ulus maxima (WTMM) [21]–[23] denoising methods have
been developed and shown to be more effective than filtering
methods [24], [25].

Although denoising increases SNR, many experimental-
ists are skeptical of the denoised signal as they fear inade-
quate noise removal and/or unknown signal distortion. More
importantly, the current wavelet-based denoising methods
are not very reliable in accurately retrieving the signal com-
ponents, especially for weak signals that have magnitude
close to noise. Also, these methods try to eliminate random
noise and are not tested against systematic (or coherent)
noise generated by the instrument or (e.g. biological) sample.

Another problem with current wavelet denoising methods is
their practical implementation. They do not provide informa-
tion regarding the choice of wavelets to use, the number of
decomposition levels to denoise, nor do they have the flexi-
bility to adjust the thresholds. A noisy signal clearly indicates
its degree of uncertainty, whereas a denoised signal lacks such
information. Therefore, to reduce noise, signal averaging [26]
is widely used to improve experimental data. In this paper,
experimental data from electron spin resonance (ESR) spec-
troscopy [27] is used, where signal averaging is currently
the most reliable method to reduce noise. Although some
signal denoisingmethods like filtering [28] and the traditional
wavelet denoising [29] methods have been applied to ESR
spectra [30], they have not yet yielded the desired results.

In this paper, a new wavelet denoising approach is
presented which is based on wavelet shrinkage, that signif-
icantly improves denoising and provides clearer implemen-
tation compared to previous methods. It can be reliably used
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for denoising experimental signals. The paper is organized
as follows. First, a brief description of the wavelet shrinkage
method is provided. Second, the issues of estimating the
choice of wavelets and accurately selecting decomposition
levels to denoise are discussed. Third, the new denoising
method is presented. Fourth, examples of denoising using
experimental results from ESR spectroscopy are presented
and compared with other wavelet shrinkage denoising meth-
ods. Finally, brief comments are given on the findings and
future extensions.

II. WAVELET SHRINKAGE DENOISING METHOD
Wavelet shrinkage methods provide effective signal denois-
ing with minimum computational complexity. In the wavelet
domain, the signal is coherent and has concentrated ‘‘energy’’
residing in just a few high magnitude coefficients, whereas
incoherent noise is represented by a large number of coef-
ficients with small magnitudes. This sparsity of wavelet
coefficients representing the signal is exploited by wavelet
shrinkage methods to separate noise from signal coefficients.
Figure 1 displays a block diagram of the denoising process.
Algorithm 1 summarizes the wavelet shrinkage denoising
method.

FIGURE 1. Block Diagram of a Standard Wavelet Shrinkage Method.

The noise threshold for the selected Detail components
is obtained either using the universal threshold [31] λ =
˜σNoisej
√
2 log(N ), or decomposition level dependent thresh-

olds λj = ˜σNoisej

√
2 log2 Nj [32] or λj =

˜σNoisej

√
2 logNj

log(j+1) [33],

where Nj is the length of the jth Detail component, and ˜σNoisej

is an estimate of noise level [31]–[33]. However, state-of-the-
art level-dependent noise threshold selection methods like
Stein’s Unbiased Risk Estimate (SURE) threshold [34], [35]
and Minmax threshold [31] are more widely used for their
better performance.

Thresholding functions are then applied to remove
noise using noise thresholds. Hard and soft thresholding
are the most common thresholding techniques defined in

Algorithm 1 Wavelet Shrinkage Denoising
1: Select a wavelet.
2: Select k (1 ≤ k ≤ M ) decomposition levels to denoise

the Detail components, where M = blog2(N )c, and
N = length(X ), and X is the discrete input signal.

3: Take the k th level discrete wavelet transform (DWT) of
the discrete input signal X , decomposing it into k decom-
position levels, also referred to as k Detail components
and the k th Approximation component.

4: Estimate the noise for the k Detail components.
5: Calculate the noise threshold for the k Detail compo-

nents.
6: Apply noise thresholding to the k selected Detail compo-

nents.
7: Take the inverse discrete wavelet transform (IDWT) of

the resultant k Detail components and the k th Approxi-
mation component.

equations 1 and 2, respectively:

w̃j,i =

{
wj,i : |wj,i| ≥ λj
0 : |wj,i| < λj

(1)

w̃j,i =

{
sgn(wj,i)(|wj,i| − λj) : |wj,i| ≥ λj
0 : |wj,i| < λj

(2)

where wj,i and w̃j,i are noisy and denoised wavelet coeffi-
cients, respectively, at the jth decomposition level and the
ith location of the Detail component and j ≤ k . Hard
thresholding is better suited when a Detail wavelet coeffi-
cient is either a signal or a noise coefficient. On the other
hand, soft thresholding performs better when a Detail wavelet
coefficient contains both signal and noise. There are other
thresholding functions in the literature that can also be used;
for example, see [9], [36]–[39].

A. LIMITATIONS OF CURRENT SHRINKAGE METHODS
1) The choice of k , the number of decomposition levels to

be denoised, is arbritary.
2) The choice of ˜σNoise greatly influences the noise

threshold λ, but there is no definitive way to esti-
mate the noise value ˜σNoise. Although widely used,
different noise estimates yield different noise thres-
holds [31], [32], [35].

3) Assuming white gaussian noise (WGN), a single noise
threshold is selected and applied to the magnitudes of
both the negative and positive Detail coefficients. Other
noise such as Poisson noise, Rician noise, and coherent
noise are not considered for positive or negative bias in
noise. Even forWGN, the assumption of no distribution
bias is often flawed as will be discussed in section III.

4) The methods used result in fixed thresholds that are
not adjusted. Flexiblity in adjusting thresholds enables
users to reach accurate or optimal thresholds for
signals, especially when the wavelet coefficients of
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weak signals are close to the maximum magnitude of
noise.

Apart from the above reasons, the current denoising meth-
ods do not emphasize the choice of wavelets that is neces-
sary to create sparsity, and separate noise and signal in the
Detail components. One possible reason is that these methods
are mostly applied in image processing applications which
already use customized wavelets.

III. NOISE IN WAVELET DOMAIN
It is assumed that randomWGN translates into randomWGN
in the wavelet domain. Ideally, random white gaussian noise
with zero mean should be symmetric with no overall positive
and negative bias, and the magnitude of minimum and maxi-
mum values should be approximately the same. Note that the
minimum is the largest magnitude among negative coefficient
values (max(|wj,i < 0|)). To test this noise behavior in the
wavelet domain, simulations were run in MATLAB using the
following steps:

1) Generate random WGN with zero mean, call it X , and
length N .

2) Take the full scale DWT of X that results in blog2(N )c
Detail components.

3) Calculate the skewness of each Detail component. The
skewness is a parameter that measures positive or neg-
ative bias in a distribution with respect to the mean. For
WGN (i.e. normal distribution), the skewness should be
zero.

4) Find the magnitude of minimum and maximum value
of each Detail Component.

5) Calculate the percentage difference between the mag-
nitude of minimum and maximum value with respect
to the minimum value between them, i.e.

|max(|wj ≥ 0|)−max(|wj < 0)|)|
min(max(|wj ≥ 0|),max(|wj < 0|))

× 100

The percentage values should be close to zero as the
magnitude of minimum and maximum values would be
expected to be almost the same.

The following are the simulation parameters:
• Number of Simulations: 1000-5000.
• Noise Length N: 1024-4096.
• Wavelet Families: Coiflet, Daubechises, and Symlet.

Findings:
1) The wavelet coefficient distribution for each Detail

component has either positive or negative bias. The
positive and negative bias is not correlated amongst
successive Detail components.

2) There is a substantial difference between themagnitude
of minimum and maximum values, and it increases
monotonically from decomposition level 1 to M.
For decomposition level 1, it is already more than
10 percent.

We believe that this behavior is due to the finite nature of
discrete values and the DWT. There seems to be no correla-
tion between the choice of wavelet and the distribution bias.

Experimental signals do not necessarily have simple WGN;
their noise content is liable to be more complex and may have
inherent positive or negative bias.

IV. WAVELET BASES
It is difficult to apply the DWT without selecting an appro-
priate choice of wavelets. In general, standard wavelets
that resemble the signal or its properties yield better signal
and noise separation as well as sparsity. For example, we
found that the coiflet wavelet family is better suited for
cw-ESR spectra, compared to other wavelet families such as
daubechies and symlets. However, a trial and error method to
select the appropriate wavelet can be tedious and challenging
in finding an appropriate wavelet. We recommend develop-
ing customized wavelets corresponding to the signal proper-
ties. For example, cw-ESR spectra are typically represented
as blends of functions of Gaussian and Lorentzian func-
tions [27], and hence, a specific wavelet could be designed
and used for such spectra.

To effectively eliminate noise from signal coefficients,
the wavelets should be designed to satisfy the following
conditions:

max(|wNoisej ≥ 0|) < min(|wSignalj ≥ 0|) (3)

max(|wNoisej < 0|) < min(|wSignalj < 0|) (4)

The above conditions eliminate the need for thresholding
methods (like soft-thresholding) that assume a wavelet cof-
ficient as a sum of signal and noise coefficient, i.e. wj,i =
wSignalj,i + wNoisej,i . In other words, either wj,i = wSignalj,i or
wj,i = wNoisej,i .

V. NEW DENOISING METHOD
The new denoising method applies the wavelet shrinkage
approach with the following novel features:

1) The decomposition levels to denoise can be determined
by the user through visual inspection of the Detail and
Approximation components as described below. Alter-
natively, an objective measure to select the k decompo-
sition levels is provided.

2) Then a new noise threshold selection formula is pre-
sented that allows the user automatic adjustment of the
noise thresholds. Such noise thresholds do not require
the use of a noise estimation formula.

3) Two distinct noise thresholds are used in the threshold-
ing function for negative and positive wavelet coeffi-
cients, respectively.

4) The k th Approximation component is noise thresholded
along with the k Detail Components.

These features are discussed below. Figure 2 illustrates the
new denoising method.

A. DECOMPOSITION LEVEL SELECTION
Selecting decomposition levels to denoise is a major chal-
lenge to which current methods do not provide guidance.
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FIGURE 2. Block Diagram of the New Method.

Generally decomposition levels between 2-5 are arbitrar-
ily selected without first examining the Detail components.
A poor choice can result either in signal under-denoising or
distortion, similar to that caused by poor noise thresholding.
For experimental signals, this can lead to misleading analysis
because the accuracy of denoising cannot be verified for every
signal. A subjective and an objective method are provided to
select the decomposition level k .

1) SUBJECTIVE METHOD
As all the Detail components and their corresponding
Approximation components are correlated, visually observ-
ing all the components can easily allow one to select the
correct decomposition level. In the new method, the user
determines the Detail components to be denoised with the
help of visual correlation. An easy way is to select decom-
position levels until one is reached in which noise is almost
indistinguishable. The location and magnitude of signal and
noise in the wavelet component are also useful sources
of information, especially for identifying systematic noise.
In all the Detail components, signals occur in the same loca-
tions with large magnitudes, whereas random noise appears
inconsistently with small magnitudes, and systematic noise
usually occurs at a specific location with low magnitude.
The amount of noise present in the Detail components
reduces from decomposition level 1 to decomposition levelM
because noise ususally contains more high frequencies than
low frequencies. For very low SNR, initial decomposition
levels like 1 and 2 may contain just noise, whereas for very
high SNR, the last decomposition levels may only contain
signal. Through Figure 3, decomposition level selection is
illustrated by an example from ESR. Examining the figure,
one can see that the Detail components at decomposition
levels 1-5 contain varying amount of noise, whereas the noise
(low frequency) from decomposition level 6 is extremely
small and indisguishable. The noise at and above

FIGURE 3. All the Detail and Approximation components of a cw-ESR
spectrum. DL is the decomposition level. After examining the figure,
k = 5 can be confidently selected.

decomposition level 6 is represented in the Approximation
component at decomposition level 5. Hence, the decomposi-
tion level k = 5 can be confidently selected.
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After selecting decomposition level k , k Detail components
and the k th Approximation component are noise thresholded
as shown in Figure 2. Coupled with noise thresholding,
the decomposition level selection process also acts as a
feedback for optimal thresholds and correct denoising by
allowing visual comparison between the thresholded and non-
thresholded wavelet components. Based on the feedback,
the κj,L and κj,H values (discussed below) can be adjusted
to desired thresholds. The standard state-of-the-art wavelet
shrinkage methods do not exploit the correlation amongst
wavelet components nor use this approach. They use non-
adjustable thresholds which are optimized only for random
Gaussian noise.

This subjective method is useful when a single set of
experimental data needs to be denoised. It provides control
to the experimentalist in selecting the decomposition levels
as well as insights about the signal observed for analysis.

2) OBJECTIVE METHOD
The objective measure of selecting k is more appropriate for
real time denoising and where extensive experimental data
needs to be denoised. To obtain the decomposition levels for
noise thresholding, first calculate the ‘‘peak-to-sum ratio’’
(Sj) of the Detail components,

Sj =
max(|wj|)
Nj∑
i=1

|wj,i|

(5)

Sj reflects the sparsity of a Detail component and allows
the identification of noise presence in a Detail component.
A large Sj implies signal presence with only a few large
coefficient values, whereas a small Sj reveals noise presence
with a large number of small coefficient values.

Now the determination of the decomposition
levels 1, 2, 3, . . . , k to noise threshold is described with
reference to the four categories:

1) Detail components that only contain noise coefficients
(see DL1 in Figure 3), Sj ≤ 0.01.

2) Detail components that mainly contain noise with very
few high magnitude signal coefficients (see DL2 and
DL3 in Figure 3), 0.01 < Sj ≤ 0.1.

3) Detail components dominated by signal coefficients
with noise coefficients having small magnitudes
(see DL4 and DL5 in Figure 3), 0.1 < Sj ≤ Tr .

4) Detail components that only contain signal coefficients,
i.e. noise is no longer distinguishable (see DL6 - DL10
in Figure 3), Sj > Tr .

Here Tr is a criterion to distinguish between the Detail com-
ponents of types 3 and 4 having some noise and almost no
noise. Therefore, k = j where Sj ≤ Tr and Sj+1 > Tr .
We find that the choice of Tr ≈ 0.2 leads to an effective
criterion between cases 3 and 4 (More generally, 0 ≤ Tr < 1
given that Sj of equation 5 is limited by 0 ≤ Sj < 1). Note
that the Detail components in the above-mentioned categories
occur in sequential order (see Figure 3). Depending on the

noise level in a signal, the initial Detail component categories
may or may not be present.

B. THRESHOLD SELECTION
Wavelet shrinkage denoising depends greatly on the noise
threshold value because a poor choice of threshold can result
in unremoved noise or distorted signal. The presence of signal
and noise coefficients in a Detail component may not result
in a symmetric distribution of coefficients and zero mean.
The coefficients of signal, systematic noise, and other non-
symmetric noise, like Poisson noise, can create positive or
negative bias in the Detail component and result in non-
zero mean. Even random Gaussian noise is likely to have
coefficient distribution bias due to the Detail components’
discretization and finite length as was noted in section III.
In fact, it was found that symmetric Gaussian noise with zero
mean has substantial differences in magnitudes of minimum
and maximum noise values in the discrete wavelet domain,
and the difference increases with the decomposition level
(cf. section III).

Therefore, one selects two noise thresholds (λL and λH ) in
the following way,

λj,L = µj − κj,Lσj (6)

λj,H = µj + κj,Hσj (7)

where λj,L and λj,H are the lower and upper thresholds at
decomposition level j; κj,L and κj,H are adjustable parameters
for each threshold; and µj and σj are the mean and standard
deviation, respectively, of the wavelet component at decom-
position level j, and are defined here as,

µj ≡

Nj∑
i=1

wj,i

Nj
(8)

σj ≡

√√√√√ 1
Nj − 1

Nj∑
i=1

(wj,i − µj)2 (9)

The two noise thresholds in equations 6 and 7 do not
require the calculation of the noise level in a Detail com-
ponent. They use the mean (µj) and standard deviation (σj)
of the jth Detail component, which includes both signal and
noise coefficients, and κj,L and κj,H are used to accurately
scale σj in eliminating noise coefficients. Also, the two
thresholds include the mean value µj, and do not assume it
to be zero.

To obtain appropriate κ values, we first find the minimum
values of κj,L and κj,H that cover the all the coefficients in the
jth Detail component. Substituting minimum (peak negative
value) and maximum (peak positive) values of the Detail
component in equations 6 and 7, respectively, one can express
them as:

κj,Lmin =
µj −max(|wj < 0|)

σj
(10)

3866 VOLUME 4, 2016



M. Srivastava et al.: New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds

κj,Hmin =
max(|wj > 0|)− µj

σj
(11)

Since all the decomposition levels j (1 ≤ j ≤ k) where
Sj ≤ 0.01 (i.e., case 1) contain only noise coefficients, for
these cases we can set κj,L = κj,Lmin and κj,H = κj,Hmin .
In other words, all the coefficients of the Detail component
are assigned zero.

For all the decomposition levels j (1 ≤ j ≤ k) where
0.01 < Sj < Tr (i.e., cases 2 and 3), both signal and noise
coefficients are present. Knowing that the magnitude of a
noise coefficient is less than that of the signal coefficients
(cf. equations 3 and 4), κj,L < κj,Lmin and κj,H < κj,Hmin . One
then obtains κj,L and κj,H from κj,Lmin and κj,Hmin using the
peak positive and negative coefficient values in the following
way,

κj,L =

(
Sr,L − Sj,L

Sr,L

)
κj,Lmin (12)

κj,H =

(
Sr,H − Sj,H

Sr,H

)
κj,Hmin (13)

where Sr,L and Sr,H are the reference peak-to-sum coefficient
values and are defined as Sr,L ≡

Sk,L+Sk+1,L
2 and Sr,H ≡

Sk,H+Sk+1,H
2 . Sj,L and Sj,H are the peak-to-sum ratios of the

negative and positive coefficient values, respectively. They
are calculated from equation 5 as,

Sj,L =
max(|wj < 0|)
Nk∑
i=1

|wj,i < 0|

(14)

Sj,H =
max(|wj ≥ 0|)
Nj∑
i=1

|wj,i ≥ 0|

(15)

By separating the wavelet coefficients at a decomposition
level into two groups, one having negative values and other
having positive values, the number of coefficient values as
well as their sum in each category is reduced. However, the
peak value remains at a similar level. In other words, one
expects max(|wj < 0|) ≈ max(|wj ≥ 0|), and one of them

is in fact max(|wj|), whereas
Nj∑
i=1

|wj,i < 0| and
Nj∑
i=1

|wj,i ≥ 0|

are both less than their sum
Nj∑
i=1

|wj,i|. Thus Sj,L; Sj,H > Sj.

Instead of manually selecting the kappa values, it is found
that equations 12 and 13 accurately estimate the required κj,L
and κj,H values.
The Detail components at decomposition levels j > k

(i.e., Sj > Tr ) are not noise thresholded as they contain
only signal coefficients or signal and indistinguishable low
frequency noise coefficients.

Although κj,L and κj,H will optimally select the noise
thresholds, they may require minor adjustment by user inter-
vention for the following three exceptions:

1) Even for Sj ≥ 0.01, a Detail component can have only
noise coefficients due to one or more large random
noise spikes. In this case, κj,H = κj,Hmin and κj,H =
κj,Hmin , instead of equation 12 and 13.

2) In a noise-dominated Detail component, either positive
or negative coefficients are all noise, requiring readjust-
ment κj,H = κj,Hmin or κj,H = κj,Hmin , respectively.

3) When small signal and large noise coefficient values
are comparable, κj,L and/or κj,H may require a slight
increase or decrease in their values to separate signal
and noise coefficients.

C. THRESHOLDING FUNCTION
This new approach to denoise the signal uses hard thresh-
olding coupled with the above noise threshold selection
method. Unlike other thresholding techniques, hard thresh-
olding ensures that the signal wavelet coefficients are not
distorted by the noise thresholds, especially when signal and
noise coefficients are disjoint and not superimposed. With
appropriate wavelet selection, the noise present at a signal
location is separated in the initial decomposition levels and is
removed using noise thresholding. Hard thresholding is now
carried out in the following way,

w̃j,i =

{
0 : λj,L ≤ wj,i ≤ λj,H
wj,i : otherwise

(16)

wj,i is the ith Detail coefficient at jth decomposition level, w̃j,i
is the thresholded wavelet coefficient, and λj,L and λj,H are
the two noise thresholds obtained from equations 6 and 7.
The above equation is a generalized form of the hard thresh-
olding function shown in equation 1. If κj,L = κj,H and
µ = 0, then |λj,L | = |λj,H | = λj, and equation 16 becomes
equation 1.

D. DENOISING THE APPROXIMATION COMPONENT
Current wavelet shrinkage methods do not denoise the
Approximation component because the noise thresholding
relies on sparsity of wavelet coefficients for estimating noise
and selecting thresholds. Experimental signals often contain
substantial low frequency noise, especially at low SNR, that
impedes analysis. The Detail components that represent low
frequency noise are non-sparse, restricting the effectiveness
of noise thresholding. However, the Approximation compo-
nent can also contain low frequency noise. Thus, it would
be desirable to remove the Approximation component’s low
frequency noise. Depending on the signal properties and the
choice of wavelet, the k th Approximation component can
represent low frequency noise and signal coefficients in a
relatively sparse manner. The signal coefficients will have
larger values than the noise coefficients. This new approach
denoises the k th Approximation component to eliminate low
frequency noise. Similar to the Detail components, the noise
thresholds for the Approximation component is selected
using the Approximation coefficients in equations 6 and 7,
where κ values are obtained from equations 12 and 13.
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The thresholding function in equation 16 is then applied to
remove the noise. This is shown in the block diagram of
Figure 2.

VI. ESR EXPERIMENTS AND RESULTS
A. ESR METHODOLOGY AND SAMPLE PREPARATION
Most of the ESR experiments were performed at 20◦C on
a commercial spectrometer (BRUKER ELEXYS-II E500)
at a standard microwave frequency of 9.4 GHz (X-band)
corresponding to a dc magnetic field of 0.34 Tesla
(cf. Figs. 3-8). These results are referred to as example 1.
In these experiments the microwave frequency is held
constant, while the magnetic field is swept through reso-
nance to obtain the ESR spectrum [27]. The sample con-
sisted of 4 µL of a 100 µM aqueous solution of the
commonly used spin-probe molecule Tempol (4-Hydroxy-
2,2,6,6-Tetramethylpiperidine 1-oxyl) [27], [40]–[43]. It was
placed in a glass capillary of 0.8 mm ID, which was then
introduced into the microwave cavity situated between the
pole caps of the dcmagnet. Themagnetic fieldwas then swept
over a range of 60 G corresponding to the resonant spectral
range which took 2 minutes, and a 82 ms time constant
was used. The spectral data consisted of 4096 points along
the magnetic-field sweep. In addition, small coils placed at
the sides of the resonator provided a small magnetic field
modulation of ±0.02 G at a frequency of 100 kHz. The
100 kHz modulated ESR signal was detected with a lock-in
detector at this frequency, providing the first derivative of the
absorption signal [27], [44]. Low power (0.2 mW)microwave
radiation was used to avoid saturating the ESR signal. Multi-
scan experiments were performed with a delay of 4 s between
scans. The results of these scans were then averaged. The
ESR spectrum in Figure 3 was obtained under very similar
conditions, also for the Tempol spin-probe.

In example 2, an ESR spectrum (Figure 9) was obtained
under different conditions to provide a more complex spec-
trum for denoising. It was obtained on a home-built (ACERT)
95 GHz ESR spectrometer [43] with a dc magnetic field
of 3.3 Tesla at 25◦C. The sample here contained ca. 5 µL
of phospholipid vesicles doped with 0.5% of a lipid
spin label: 16-PC (1-acyl-2-[16-(4,4-dimethyloxazolidine-
N-oxyl)stearoyl]-sn-glycero-3-phosphocholine) in the fluid
phase that had been suspended in water. It was placed in
a disc-like sample holder utilized for millimeter-wave ESR
methodology [43], [45]. The acquisition parameters were:
sweep width of 250 G, sweep time of 2 min with a time
constant of 100 ms. The millimeter-wave power was 16 mW
and the spectrum consists of 512 points. The field modulation
parameters were: 6 G modulation amplitude and 100 kHz
modulation frequency. The spectrum in Figure 9 is the aver-
age of 100 scans. The time between scans was 3 s.

B. EXPERIMENT
These experimental cw-ESR spectra were used to test and
compare the denoising methods. By averaging different

numbers of scans, different SNRs were obtained. In the case
of typical cw-ESR spectra, such as those in Figures 3-9,
they have regions with zero signal, aiding in the estimation
of noise. The noise in these experiments is predominantly
random Gaussian noise, as is typical in ESR. Hence, the
cw-ESR spectra reveal the effectiveness of denoising meth-
ods at places where the signal is present as well as absent.
In Figure 4 two noisy spectra from a single sample are shown,
but at different SNRs obtained by signal averaging 4 and 16
scans, respectively. As a reference, the signal averaged over
500 scans is used for comparison with the denoised signals.
The SNR was calculated as,

SNR =
SignalPeak−to−Peak

Noiserms
(17)

or in decibels (dB)

SNR = 20 log10

(
SignalPeak−to−Peak

Noiserms

)
(18)

where rms is the root mean square. The SNR measures
both distorting (i.e., structural) and non-distorting (i.e., non-
structural) noise in the signal, but it cannot differentiate
between them. Usually, the structural fidelity of the noisy or
denoised signal with respect to a reference signal can be visu-
ally observed. Of course, the retention of signal structure is
important. Apart from visually observing and comparing the
noisy or denoised signal with a reference signal, an objective
measure, the structure similarity index measure (SSIM) [46]
was used. It enabled the estimation of the structural similarity
or fidelity of the noisy and of the denoised signals at 4 and 16
scans with respect to the reference 500 scan signal. The SSIM
is calculated as,

SSIM (X ,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ

2
Y + c1)(σ

2
X + σ

2
Y + c2)

(19)

where X is either the noisy or denoised signal; Y is the
reference signal; µX and µY are the mean values of X and Y ,
respectively; σX and σY are the standard deviation values of
X and Y , respectively; σXY is the covariance of X and Y ; and
c1 and c2 are small positive constants used for stabilizing each
term. The SSIM value ranges within [−1, 1], and achieves 1
when X is identical to Y (SSIM (X ,Y ) = SSIM (X ,X ) =
SSIM (Y ,Y ) = 1). The more that X structurally resembles Y ,
the SSIM value will be closer to 1. MATLAB was used to
calculate the SSIM.

An ESR spectrum is frequently composed of Lorentzian
and Gaussian functions, or mixtures of both. The examples of
Figures 3-8 are simple Lorentzians, whereas that of Figure 9
is more complex. If the cw-ESR spectra match the wavelets,
the denoising can be extremely effective. Thus, we used
coiflet 3 as the wavelet because it best resembles the spectra.
Other coiflets and wavelets such as daubechies and symlet
did not perform as well as coiflet 3.

The new method is compared with the standard
SUREShrink and Minimax methods [29], [31] using both
hard and soft thresholding as well as other wavelet
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FIGURE 4. Example 1: New Method Denoising results at 16 and 4 scans, respectively. The cw-ESR spectrum was obtained from a sample of the nitroxide
spin probe tempol in a 0.1 mM solution in water [47]. The signal amplitude is in arbitrary units (a.u.) and the abscissa is in Gauss. (a) 16 Scans: New
Method vs Noisy. (b) 16 Scans: New Method vs Reference (500 scans). (c) 4 Scans: New Method vs Noisy. (d) 4 Scans: New Method vs Reference (500
scans).

denoising methods. We used the two different examples
(Figures 5-8 and Figure 9) to show and compare the denoised
results. The SUREShrink and Minimax methods are the opti-
mized hybrid scale dependent threshold selection schemes
in the current literature [24], [48], whereas other newer
methods [9], [37]–[39] use a thresholding function other than
hard and soft in an effort to obtain better denoising. Filtering
methods are not compared with the new method because
standard wavelet denoisingmethods perform better than them
as shown in ESR [30] and in general [24], [25]. The decom-
position level k that yields maximum SNR compared to other
decomposition levels is selected for the standard denoising
methods. In the new method, Tr = 0.20 was used for all
the examples. We have extensively tested (both experimental
and model data sets) this value of Tr as the criterion for noise
thresholding and find it succeeds in virtually all cases.

C. RESULTS
In example 1 (cf. Figures 3-8), the denoised spectra by the
new method at 16 and 4 scans in Figure 4 are shown over-
lapped with the noisy and reference spectra for comparison

and analysis. As can be seen, the new method successfully
recovers the signal peaks and removes the baseline noise.
Also, the newmethod retrieves the small satellite peaks (adja-
cent to large peaks) that were submerged in noise. Com-
paring the spectra of 16 and 4 scans, the denoised 16 scan
spectrum recovers the satellite peaks more accurately than
the 4 scan denoised spectrum, as expected. In Figures 5-8 the
new method is compared with the denoised spectra of other
denoising methods.

Similarly in example 2 (see Figure 9), the new method
effectively removes the baseline noise and is better able to
retrieve the peaks compared to other denoisingmethods. Note
that the results of non-soft and non-hard thresholding func-
tion methods [9], [37]–[39] were similar for example 2, and
hence, only Zhang and Song’s method [39] is shown. As can
be seen, the current state-of-the-art methods are either not
very effective at removing baseline noise and/or they distort
the signal peak heights.

Tables 1 and 2 show the SNR of the original noisy and
denoised spectra, along with decomposition levels selected
for noise thresholding. In example 1, it can be seen that the
newmethod doubles the SNR (in dB) from the noisy spectrum
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FIGURE 5. Experimental Data Example 1: Comparison of New Method with Minimax and SUREShrink
Denoising at 4 scans.

and is more than 20 dB greater than other denoising methods.
In example 2, which is a more complex but much broader
spectrum, the new method increases the SNR by a huge

amount, almost reaching the noiseless state. This is likely due
to the low frequency nature of the spectrum versus the higher
frequency noise.
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FIGURE 6. Example 1: Comparison of New Method with Denoising methods [9], [37]–[39] other than soft and
hard thresholding at 4 scans.

For example 1, since there is a good reference
signal, the SSIM is also calculated and shown in Table 1.
It can be seen that the noisy signal at 16 scans

is structurally very similar to the reference signal, revealing
that the noise hardly distorts the signal. But the 4 scan
noise possesses some structural distortion. For 16 scans,
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FIGURE 7. Example 1: Comparison of New Method with Minimax and SUREShrink Denoising at 16 scans.

the new method along with SUREShrink and Minimax
soft and hard thresholding methods increases the SSIM,
while the other methods decrease it. The increase

is highest for the new method. For 4 scans, the
new method significantly increases the SSIM, while
other denoising methods slightly improve it. At both
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FIGURE 8. Example 1: Comparison of New Method with Denoising methods [9], [37]–[39] other than soft and
hard thresholding at 16 scans.

16 and 4 scans, the new method not only regains the
referencesignal maximally but it also resembles it very
closely.

Both qualitatively and quantitatively, the new method out-
performs the current denoising methods and successfully
recovers the desired spectrum.
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FIGURE 9. Example 2: Comparison of New Method with other standard denoising methods. The cw-ESR spectrum was
obtained from a sample of a nitroxide-labeled lipid in lipid vesicles.

TABLE 1. Example 1 - Signal to Noise Ratio (SNR): Comparison of New Method with other standard wavelet denoising methods at 16 and 4 scans. Hard
and Soft represent hard and soft thresholding, respectively; dB is SNR in decibels; and DL is Decomposition Level (cf. Figures 3-8).

D. COMPUTATIONAL COMPLEXITY
For the new method as well as the other methods, the
computational complexity of DWT, IDWT, plus applica-
tion of the thresholding function is O(N ). However, the
new method takes O(N ) operations to calculate thresh-
olds, as it requires only simple arithmetic operations for

calculating mean, standard deviation, and ratios. On the other
hand, the thresholds obtained from SURE and Minimax
optimization can take O(N logN ) operations. Therefore,
overall the new method has computational complexity
(O(N )) which is less than the other denoising methods
(O(N logN )).
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TABLE 2. Example 2 - Signal to Noise Ratio (SNR): Comparison of New
Method with other standard wavelet denoising methods. dB is SNR in
decibels; and DL is Decomposition Level (cf. Figure 9).

TABLE 3. Example 1 - Computation Time: Comparison of New Method
with other standard wavelet denoising methods.

Table 3 shows the actual computation times of the new
method and other denoising methods for example 1. The
computation time was calculated in MATLAB on a 64-bit
operating system with 16 GB RAM and a 3.30 GHz proces-
sor. To overcome any processing variation in the computer,
the computation time was measured 5000 times and then
averaged. It can be seen that the new method is more than
6 times faster than other denoising methods.

VII. CONCLUSIONS
This paper presents a comprehensive framework for wavelet
transform denoising illustrating it with denoising of cw-
ESR spectra, and it shows the limitations of current wavelet
denoising methods. The two examples were chosen as illus-
trative from over 100 examples of model and experimental
data. This new denoising method enables the selection of
appropriate thresholds for noise removal. It is shown that
this new method is able to effectively denoise and especially
retrieve the signal peaks accurately.

There are two advantages of the proposed method. First,
it allows the analysis of a low SNR signal by effectively
retrieving the relevant information. This is especially bene-
ficial where signals are obtained at low SNR. Second, the
new method can be used to minimize the number of scans
needed for signal averaging, resulting in large savings in
experimental time. In the application of the new method to
extensive cw-ESR spectra, we found it to be consistently
successful in accurately retrieving the original signal. The-
oretically, very extensive signal averaging would remove all
the random noise, but due to time constraints, the number of
scans that are practical is often limited.

We believe that our new denoising method can be
applied to other spectroscopies such as nuclear magnetic

resonance (NMR) spectroscopy [49], Infrared spec-
troscopy [49], Ultraviolet spectroscopy [49], Raman spec-
troscopy [50], mass spectroscopy [49], and others that yield
1D spectra. We currently are developing this approach
for time domain signals as well as for two- and higher-
dimensional spectroscopies.
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